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Revised Schedule
- Week 3 (4/18 - 4/22): Improve visualization of game simulation (Li). Implement basic

optimization for parallel simulation in CUDA (Li). Link simulation framework to training

environment (Kevin).

- Week 4 (4/23 - 4/29): Perform quantitative performance analysis of simulation (Li).

Implement parallel simulation in OpenMP and compare it with CUDA if time permits

(Li). Implement a better reward function in the RL model (Kevin).

- Week 5 (4/30 - 5/5): Implement a better training algorithm and optimize the model

(Kevin). Write the final report and prepare for the poster session (Li & Kevin).

Progress Summary
For the game simulation part, we develop our framework based on our assignment 2 code which

supports simulation on both CPU and GPU, and we can choose to either display the game

simulation on screen for demo, or dump the output to files. CPU simulation is a basic serial

version of implementation and should be regarded as the baseline of performance that can be

used as reference for later evaluation. It simply iterates over all the pixels in the frame and

calculates the next state of each pixel. CUDA implementation tries to accelerate this process by

parallelizing both next state calculation and rendering at pixel level. The application itself is not

hard to do workload balance and data synchronization, and current results show that on the 1000

x 1000 frame with random input, we can observe about 25~30x speedup without any aggressive

optimization. We may continue to optimize the program or try other parallelism models like

OpenMP and compare the speedup to find the best platform to run simulation.

For the AI training part, we are currently using a serial implementation on both the simulator and

training. As both the simulation and training environment are in development, we currently

trained an AI to find the best openings in the given initial box and trained it using a genetic

algorithm. The reward function of its action is calculated by the max lives it will achieve divided

by the number of generations plus the lives at the end of the simulation. The AI is a three-hidden



layer fully connected neural network. Each training episode will have a list of models given its

initial box and the one with the highest reward is chosen to be the baseline of the next

generation. Each model of a generation is a mutation of the best model from the previous

generation where 70% with a mutation rate of 0.1, 20% with a mutation rate of 0.3, and 10%

with a mutation rate of 0.7 keep the exploration during training.

Revised Goals & Deliverables for Poster Session
For the simulation part, we don’t need to make any modifications in our proposal. We will

continue developing our parallel simulation program and perform quantitative analysis on the

speedup of parallelization. In the poster session we will have a live demo on simulation of

Conway’s game of life.

For the AI training side, we are making progress but do not know for sure how the competitive

AI will turn out since it is a much more complicated environment. However, after weeks of

learning and researching, we have nailed down some basic reinforcement learning approaches.

Meanwhile we could have some demos on the pattern our AI finds and some competitive plays

between humans and AI and also between AI themselves. Moreover, we are currently running

everything serially. Another big objective is to make it parallel. We will try to implement

ourselves using Pytorch if the process is smooth and we can get good results.



Preliminary Results
For the simulation part, we have both CPU serial simulation and GPU parallel simulation. For

example, a demo of “Gosper glider gun” simulation with 100 x 100 frame size is shown below.

For the AI training part, test training is performed and the parameters and results are in the

appendix.



Concerns
For the simulation part, we don’t have much concerns on completing this part, but we may still

try to find ways to further optimize for performance, e.g., optimize for sparse frames or other

interesting input patterns.

For the AI training part, we want to have a good reward function describing how good the initial

box the AI gives is. Currently, we are using a reward function that we come up with ourselves

and we are not confident about its performance. The reward function is such a pivotal part of

reinforcement learning. We also want to use some open-source training frameworks but we are

not confident about how compatible our environment will be with those frameworks.

Appendix
Reinforcement learning parameter

grid_size = 60

init_size = 6

sim_cycles = 200

num_model = 20

episodes = 50

Training result

Episode: 50, Best Model: 0, Best Score: 249.24

Training: 713.1318709850311 seconds

Video: https://drive.google.com/file/d/180H-QibPKS5qWnP8hcCn74zlM4gTCoDl

https://drive.google.com/file/d/180H-QibPKS5qWnP8hcCn74zlM4gTCoDl

